Causes and Consequences of Mass Bleaching in Papahānaumokuākea

Courtney Couch, **John Burns***, Kanoelani Steward, Tiffany-Nicole Gutlay, Erick Geiger, Mark Eakin, Randall Kosaki

> Hawaii Institute of Marine Biology University of Hawaii at Hilo NOAA Coral Reef Watch Program NOAA Papahānaumokuākea

History of Mass Bleaching in Hawai'i

- 1996 Mass Bleaching in Kāne'ohe Bay, O'ahu (Jokiel and Brown 2004)
- 2002, 2004 PMNM(Aeby et al. 2003, Kenyon and Brainard 2006)
 - Prolonged thermal stress and UV
 - 2002 more severe; primarily affected *Montipora* in western atolls
- 2014 & 2015: Hawaii's first back-to-back bleaching event.

Maximum Degree Heating Weeks

Objectives

1. Assess the extent and severity of bleaching event across islands/atolls, habitats and species.

2. Determine how well remotely-sensed thermal stress metrics predicted bleaching levels.

3. Assess the potential long-term consequences on the composition and 3D structure of PMNM coral communities.

Methods

1. Extent and Severity of Bleaching

- <u>4-8 sites permanent transects at</u> French Frigate Shoals, Lisianski Island, Pearl and Hermes Atoll, Midway Atoll
 - Habitats: Forereef, Backreef (shallow: 1-7m; moderate: 8-15m)

- Conducted 3, 10x1-m belt transects
- **Recorded:** species, lesion type and severity of condition.
 - Bleaching Incidence = % of colonies that were >50% bleached. Survey conducted in: September 2014 and August 2015.

Methods

2. Thermal Stress Metrics:

- NOAA Coral Reef Watch Program's 5km night-only degree heating week for each study site at the time of survey.
- 3. Coral Cover and 3D Structure:
 - Photo quads and CPCe along each transect to assess changes in % coral cover and benthic community structure.
- Structure-from-motion photogrammetry and geospatial software used to quantify 3D changes in habitat complexity

Bleaching Patterns by Atoll/Island

binomial generalized linear model with tukey HSD post hoc test

Did Thermal Stress Predict Bleaching?

How Does Bleaching Vary Across Habitats?

How Did Corals Vary in their Bleaching Susceptibility?

How Did Coral Cover Change after the Bleaching Event?

Coral Cover Change by Species

How Did Coral Cover Change after the Bleaching Event?

September 2014

August 2015

<1% Coral Cover

3D analysis of reef structure and composition

3D analysis of reef structure and composition

3D analysis of reef structure and composition

How did Thermal Stress Compare to Previous Events?

How did Bleaching Compare to 2002?

Conclusions

- In 2014, PMNM experienced the 3rd and most severe mass bleaching.
- The 2014 and 2015 thermal stress events vastly different.
- Lisianski Island experienced the highest thermal stress with 45% of colonies bleached by September 2014.
- Highest bleaching in sheltered shallow habitats dominated by Montipora.
- Coral loss was associated with reductions in both habitat complexity.
- MID experienced higher thermal stress in 2014 compared to 2002, but lower bleaching and promising recovery, which highlights importance of bleaching history and possible potential for local acclimation.
- Study highlights need for continued monitoring of bleaching risk, longterm ecosystem impacts and to identify factors important for resilience.

Mahalo!

- Field Support
 Crew of the Hi'ialakai
 Ruth Gates
 Scott Godwin
 Donahue Lab
 Eunding:
- Funding:
 - NOAA/Papahānaumokuākea

Extra slides

What Climatic Processes are Driving Mass Bleaching in Hawaii?

- Climate change
- El Niño
- Pacific Decadal Oscillation
- "The Blob"

How extensive was mass bleaching on Eastern Lisianski Island?

% cover change by species and region

Region	Species	2014 % Cover	2015 % Cover	p value
FFS	Porites lobata	12.44 (2.11)	15.22 (3.70)	0.5745
	Porites lichen	6.77 (2.40)	4.24 (2.51)	0.3065
	Porites compressa	3.88 (1.66)	4.84 (1.97)	0.834
	Porites evermanni	1.59 (1.05)	0.09 (0.09)	0.1038
	Montipora capitata	1.36 (0.31)	0.75 (0.19)	0.1412
	Pocillopora damicornis	1.22 (0.05)	0.31 (0)	0.2207
LIS	Montipora dilitata	50.02 (9.92)	0 (0)	0.00227*
	Porites compressa	17.17 (1.07)	9.94 (6.26)	0.1508
	Porites lobata	10.515 (1.99)	8.88 (1.71)	0.8408
	Montipora capitata	6.74 (1.40)	4.44 (1.35)	0.2973
	Montipora patula	3.89 (1.06)	0.14 (0.07)	0.0019*
	Pocillopora meandrina	1.05 (0.21)	0 (0)	0.0636
PHR	Montipora capitata	19.53 (5.87)	18.18 (4.70)	0.9372
	Montipora flabellata	3.06 (0.83)	0 (0)	0.0217
	Pocillopora ligulata	2.05 (0.73)	3.49 (0.77)	0.4
	Porites lobata	10.31 (5.38)	9.00 (4.35)	0.9453
MID	Montipora flabellata	14.31 (3.74)	12.68 (2.84)	0.7738
	Montipora capitata	12.34 (3.75)	3.46 (1.30)	0.0943

